APPLICATION OPERATION

This design displays irradiance of the light source (10 \(\mu \text{W/cm}^2 \) to 1000 \(\mu \text{W/cm}^2 \)) on the computer with a serial port (with very little modification a serial LCD display module can also be used).

The circuit is designed keeping in view to make it the smallest light sensor in the world (using SOIC packages).

TSL220 from Texas Instruments is an integrated light-to-frequency converter. The frequency of whose digital output depends on the quantity of the light falling on it. TSL220 comprises a large photo diode and a complete current-to-frequency converter. The combination of these allows light to be converted directly into the digital signal of variable frequency. The relationship between the irradiance of the light and the output frequency is shown below.

The heart of the “Light Meter” is PIC12C508 that powers the sensor and measures the frequency. The measured frequency is converted to light intensity and transmitted to the PC at the rate of 2400 baud. The TSL220 is powered through one of the GPIO pins to reduce power consumption (TSL220 consumes 7 to 8mA of current). PIC12C508 has one 8-bit timer which is to be used here as a frequency counter, which reads the frequency from 5 Hz to 1250 Hz is implemented in this application. The timer is configured to measure the input frequency at TOCKI pin of PIC12C508. The input frequency is gated for a precise duration of time. The precise gate is implemented in software as an accurate delay.

To keep the circuit simple and small the internal 4MHz clock is used with satisfying accuracy. In case of very high accuracy measurements an external oscillator is recommended.

The frequency is converted to the intensity of light and transmitted to the computer which displays the irradiance of light with suitable software on the computer.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Ec - Irradiance - } & 1 & 10 & 100 & 1000 \\
\text{mW/cm}^2 & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Output freq. in Hz} & 1 & 10 & 100 & 1000 \\
\text{VCC=5V, } \lambda=930\text{nm, } TA=25 \text{ C.} & & & & \\
\hline
\end{array}
\]
Sensor Interface

Block Diagram:

Scheme Diagram of Light Meter:
APPENDIX A: SOURCE CODE

title "Light Meter"
list p=12c508
include "p12c508.inc"

;***
; Designed by B.M.Dhananjaya
config _MCLRE on&_CP on&_WDT off&_IntRC_OSC
;***
clockrate equ .4000000
baudrate equ .2400
fclk equ clockrate/4
baudconst equ ((fclk/2000) /3-2)
mulplr equ .5
;***
cblock 0x08
txreg,count
delay,temp
mulcnd,h byte
1 byte
endc

org 0
movlw b'11111000' ;transition on TOCKI pin
option
movlw b'00111100' ;gpio<5:2>inputs
tris gpio ;gpio<1:0>outputs
;
start
 call delay200ms
clrfr tmr0 ;clear timer
bsf gpio,1 ;power up sensor
call delay200ms ;count for 200ms
bsf gpio,1 ;power down sensor
movf tmr0,w
movwf mulcnd
 call multiply ;multiply with constant to give the reading
 in mW/cm2
movf 1 byte,w
movwf txreg ;send low byte of
call transmit ;16 bit value to pc
movf h byte,w ;send high byte of
movwf txreg ;16 bit value to pc
call transmit
goto start ;repeat

;**
; This sub-routine, send a byte to
; the pc at 2400 bauds (8N1)
;**
transmit
 bcf gpio,0 ;send start bit
movlw baudconst
movf delay
tx_wait
movlw .9
movwf count

decfsz delay ;delay one bit
goto tx_wait
movlw baudconst
movf delay
decfsz count ;all bit transmitted?
goto next bit ;no, then repeat
tx_wait
movlw .9
movwf count
bsf gpio,0 ;send stop bit
return

next bit

rrf txreg
btfss status,c
goto setlo
bsf gpio,0
goto tx wait

setlo

bcf gpio,0
goto tx wait

;**
; This routine gives a delay of 200ms
; with 4Mhz clock
;**

delay1mS

movlw .197
movwf count
nop
goto S+1 ;delay 1mS
goto S+1
dly1mS

goto S+1
decfsz count, F
goto dly1mS
retlw 0

; delay200mS

movlw .200
movwf temp
dly200mS

call delay1mS
decfsz temp, F
goto dly200mS
movlw .64
movwf count ;delay 200x1ms=200ms
loop200mS

decfsz count, F
goto loop200mS
retlw 0

;**
; This routine multiplies register mulcnd & mulplr
; and stores the 16 bit value in h_byte & 1 byte
;**
multiply

clrff h byte
cirff l byte
movlw .8
movwf count
movf mulcnd,w
bcf status,c

loop

rrf mulplr
btfsc status,c
addwf h_byte,f
rrf h_byte,f
rrf h_byte,f
decfsz count
goto loop
retlw 0

;**
end