MEDICIÓN DE RADIACIONES NO IONIZANTES

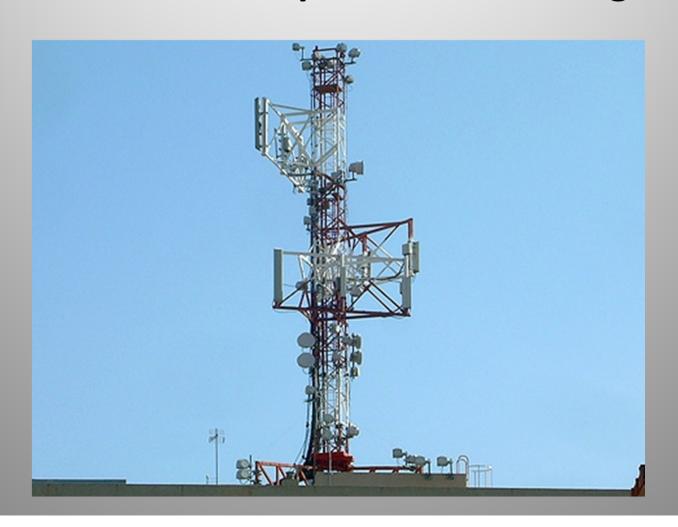
Esp. Ing. Carlos R. Leguizamón

MARCO REGULATORIO

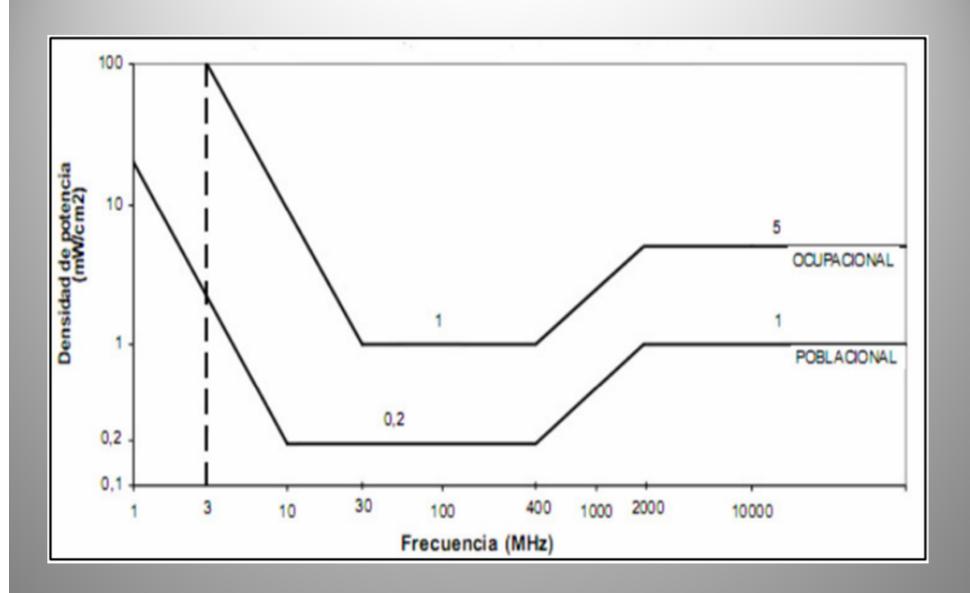
- Protocolo de medición establecido por Resolución 3690/04 Comisión Nacional de Comunicaciones.
- Resolución 202/95 Ministerio de Salud y
 Acción Social de la nación: Establece los
 valores máximos de Densidad de Potencia en
 zonas de exposición continua.
- Resolución 11/14 Secretaría de Comunicaciones: Establece la creación del Sistema Nacional de Monitoreo de las Radiaciones no Ionizantes (SiNaM).

MÁXIMA EXPOSICIÓN PERMITIDA (Poblacional u Ocupacional)

Valor eficaz de Campo Eléctrico, magnético o de Densidad de Potencia equivalente a onda plana, a los que las personas pueden estar expuestas sin efectos perjudiciales y con aceptable factor de seguridad.


EMISIÓN

Radiación producida por una única fuente de radiofrecuencia


INMISIÓN

Radiación resultante de todas las fuentes de radiofrecuencia presentes en el lugar

VALORES LÍMITES (Poblacional)

Rango de frecuencia f (MHz)	Densidad de Potencia equivalente de onda plana S (mW/cm²)	Campo Eléctrico E (V/m)	Campo Magnético H (A/m)
0,3 – 1	20	275	0,73
1 – 10	20/f ²	275/f	0,73/f
10 – 400	0,2	27,5	0,073
400 – 2000	f/2000	1,375 f ^{1/2}	0,0037 f ^{1/2}
2000 – 300.000	1 (10 W/m²)	61,4	0,16

Dos equivalencias útiles:

•
$$1\frac{W}{m^2} = 0.1 \frac{mW}{cm^2}$$

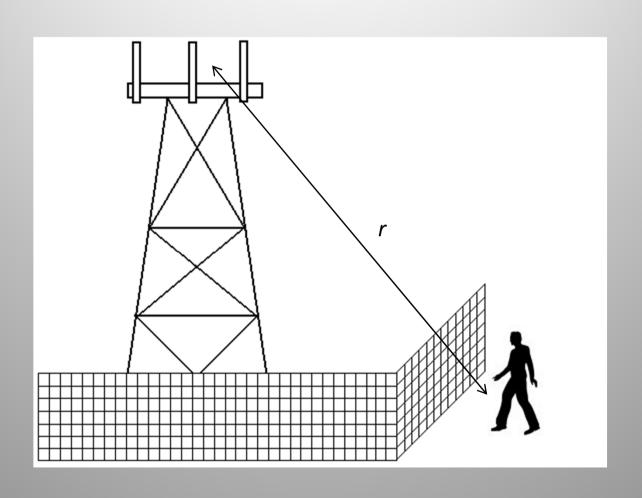
•
$$10\frac{W}{m^2} = 1\frac{mW}{cm^2}$$

PROCEDIMIENTO DE EVALUACIÓN POR PREDICCIÓN PARA CAMPO LEJANO

$$S = \frac{PRA \cdot 1,64 \cdot 2,56 \cdot F^2}{4 \cdot \pi \cdot r^2} = \frac{PIRE \cdot 2,56 \cdot F^2}{4 \cdot \pi \cdot r^2}$$

$$r = \sqrt{\frac{PRA \cdot 1,64 \cdot 2,56 \cdot F^2}{4 \cdot \pi \cdot S}} = \sqrt{\frac{PIRE \cdot 2,56 \cdot F^2}{4 \cdot \pi \cdot S}}$$

$$S \equiv [W/m^2]; PRA y PYRE \equiv [W]; r \equiv [m]$$


F: Atenuación en veces para un cierto ángulo de incidencia en el plano vertical.

UN CÁLCULO TÍPICO (Telefonía Móvil)

- Potencia Canal de control = 2 W
- Potencia Canal de Comunicación = 4 W
- Ganancia de antenas y pérdida en líneas = 10 veces
- Banda de frecuencia: 900 MHz

$$r = \sqrt{\frac{6*10*1,64*2,56*1}{4*\pi*4,5}} = 2,11 \, m$$

ESQUEMA

PROCEDIMIENTO DE EVALUACIÓN POR MEDICIÓN

¿QUIÉNES DEBEN MEDIR?

- Estaciones de Radiodifusión mono antena que no cumplan con los límites fijados por el método predictivo.
- Servicios o sistemas entre 30 MHz y 1000 MHz con PIRE ≥ 1230 W.
- Servicios o sistemas por encima de 1000 MHz con PIRE ≥ 1570 W.
- Sitios multi antena que no cumplan con el método predictivo.

UN EJEMPLO DE MEDICIÓN PARA TELEFONÍA MÓVIL

	Date/Time	Max (E-Field)	Avg (E-Field)	Min (E-Field)
	Date/Time	[mW/cm ²]	[mW/cm ²]	[mW/cm ²]
1	8/5/2011 9:46:08	0,00048	0,000447	0,000399
2	8/5/2011 9:46:09	0,000384	0,000346	0,000329
3	8/5/2011 9:46:10	0,000328	0,000311	0,000295
4	8/5/2011 9:46:11	0,000323	0,000314	0,000303
5	8/5/2011 9:46:12	0,000335	0,000313	0,000292
6	8/5/2011 9:46:13	0,000439	0,00037	0,000337
7	8/5/2011 9:46:14	0,000466	0,000382	0,00032
8	8/5/2011 9:46:15	0,000331	0,000314	0,000301
9	8/5/2011 9:46:16	0,000358	0,000318	0,000281
10	8/5/2011 9:46:17	0,000335	0,000317	0,000294
11	8/5/2011 9:46:18	0,000337	0,000324	0,000317
12	8/5/2011 9:46:19	0,000385	0,000355	0,000327
13	8/5/2011 9:46:20	0,000356	0,000338	0,000294
14	8/5/2011 9:46:21	0,000385	0,000319	0,000258
15	8/5/2011 9:46:22	0,000296	0,000271	0,000254
16	8/5/2011 9:46:23	0,000274	0,000264	0,000246
17	8/5/2011 9:46:24	0,000246	0,00024	0,000235
18	8/5/2011 9:46:25	0,000255	0,000247	0,000241
19	8/5/2011 9:46:26	0,000263	0,000259	0,000257
20	8/5/2011 9:46:27	0,000257	0,000251	0,000246
21	8/5/2011 9:46:28	0,000262	0,000253	0,000246
22	8/5/2011 9:46:29	0,000266	0,000262	0,000257
23	8/5/2011 9:46:30	0,000269	0,000265	0,000262
24	8/5/2011 9:46:31	0,000248	0,000238	0,000229
25	8/5/2011 9:46:32	0,000254	0,000237	0,000219
26	8/5/2011 9:46:33	0,000297	0,000281	0,000259
27	8/5/2011 9:46:34	0,000296	0,000284	0,000271
28	8/5/2011 9:46:35	0,000273	0,000263	0,000253
29	8/5/2011 9:46:36	0,00035	0,000305	0,00025
30	8/5/2011 9:46:37	0,000351	0,000334	0,000326
31	8/5/2011 9:46:38	0,000315	0,000306	0,000286
32	8/5/2011 9:46:39	0,000287	0,000286	0,000285
33	8/5/2011 9:46:40	0,000301	0,000282	0,000259
34	8/5/2011 9:46:41	0,000311	0,00029	0,000281
35	8/5/2011 9:46:42	0,000319	0,000306	0,000286
36	8/5/2011 9:46:43	0,000272	0,000248	0,000232
37	8/5/2011 9:46:44	0,000264	0,000248	0,000239
38	8/5/2011 9:46:45	0,000254	0,000247	0,000237
39	8/5/2011 9:46:46	0,000258	0,000246	0,000231
40	8/5/2011 9:46:47	0,000269	0,00024	0,000225

INSTRUMENTOS DE MEDICIÓN (Sondas triaxiales e instrumentos de banda ancha)

CARACTERÍSTICAS

- De banda ancha con sondas isotrópicas de campo E o H.
- Las sondas deben responder a todas las componentes de polarización.
- Deben ser de valor eficaz y entregar un valor independiente del grado de modulación
- El tiempo de repuesta para alcanzar el 90 % del valor final de un escalón de radiofrecuencia debe ser < 1 seg.
- Deben poseer blindaje adecuado.
- Es conveniente que posean retención de máximos.
- Alarmas de superación de nivel auditivas.
- Deben poseer certificado de calibración vigente.
- Deben especificar la incertidumbre de la desviación isotrópica.
- Deben especificar la incertidumbre de repuesta en frecuencia.
- Desviación con la temperatura.
- Incertidumbre de calibración.

• <u>Campo cercano</u>: Zona inmediata a la antena, la potencia radiada es **reactiva**. $Z_o \neq 377 \ \Omega$, $E \ y \ H$ no son ortogonales. D mayor dimensión de la antena.

$$0 < R < \lambda$$

$$0 < R < D$$

$$0$$

$$0 < R < \frac{D^2}{4\lambda}$$

• Campo radiante de campo cercano (Fresnel): Zona en la que los campos **reactivos** no han terminado de desaparecer, sin embargo ya se encuentran campos **radiados**. $Z_o \approx 377~\Omega$, no se puede asegurar la ortogonalidad de E y H.

$$\lambda < R < 5\lambda$$
o
 $D < R < 5D$
o
 $\frac{D^2}{4\lambda} < R < \frac{0.6D^2}{\lambda}$

• Campo lejano (Fraunhofer): E y H son ortogonales y se cumple la relación $Z_0 = \frac{E}{H} = 377~\Omega$.

$$R > 5\lambda$$
o
 $R > 5D$
o
 $R > \frac{0.6D^2}{\lambda}$

CÓMO SE MIDE

- El objetivo es determinar el nivel pico máximo de campo *E*, *H* o *S* sobre una vertical que represente la altura del cuerpo humano.
- Se debe asegurar el despeje del área de personas.
- Se realizan mediciones en los <u>lugares</u>
 <u>accesibles al público</u>, preferentemente en
 puntos evaluados a través de cálculos
 predictivos.
- Si la antena es omnidireccional, se mide sobre 16 puntos alrededor de la estación.

CÓMO SE MIDE

- Si la antena es direccional, se toman 4 puntos sobre la dirección de máxima propagación y el resto de los 12 en función del lóbulo de la antena.
- Los puntos deben encontrarse a más de 20 cm de cualquier elemento conductor.
- En en cada punto se mide desde 20 cm a partir del suelo y hasta 2 m del mismo, en intervalos de 20 cm.
- Las mediciones se realizan en el horario de mayor tráfico.

Y si los niveles medidos superan los máximos permitidos??

Si se trata de un sitio multiantena, se deben realizar mediciones con instrumental de banda angosta, a fin de detectar cuál de todas las emisiones es la que está elevando el nivel de inmisión.

CÓMO MEDIR EN BANDA ANGOSTA?

- Se debe utilizar un receptor de medición o un analizador de espectro con certificado de calibración.
- En caso de tratarse de bandas de ondas métricas se utilizan antenas direccionales calibradas, con alta relación frente espalda.
- En el caso de ondas hectométricas y decamétricas, se usan antenas direccionales que concatenan el campo H.

QUIÉN ESTÁ EXCEPTUADO DE MEDIR?

- Servicio de Banda Ciudadana (SBC).
- Servicio de Mensajería Rural (SMR).
- Servicios fijos y móviles que operan en frecuencias menores a 30 MHz.

QUIÉN DEBEN MEDIR?

Sitios mono antena cuyo producto de la PIRE por la cantidad de canales emitidos simultáneamente sea mayor a los siguientes valores:

- Para 30 MHz < f < 1000 MHz \Longrightarrow PRA = 750 W; PIRE = 1230 W.
- Para f > 1000 MHz \Longrightarrow PRA = 957 W; PIRE = 1570 W.

QUIÉN DEBE MEDIR?

En sitios multiantena con:

$$\sum_{i=100 \, kHz}^{300 \, GHz} \left(\frac{E_i}{E_{Li}}\right)^2 \ge 1$$

$$\sum_{i=100 \ kHz}^{300 \ GHz} \left(\frac{H_j}{E_{Lj}}\right)^2 \ge 1$$

 E_i H_j : Valor del campo eléctrico o magnético a una distancia de 10 metros.

QUIÉN CALCULA Y/O MIDE

- Los titulares de las estaciones contratan a un Profesional matriculado en el COPITEC u otro Colegio Profesional con convenio de reciprocidad.
- Posterior a la firma de la Encomienda, el Profesional elaborará el informe correspondiente al cálculo (Predicción – Declaración Jurada) y/o la medición que realiza, según corresponda.
- El titular deberá mantener el informe en la estación radioeléctrica correspondiente.

CÓMO VERIFICA LA CNC

- Realiza las mediciones de acuerdo al protocolo de la Resolución 3690/04.
- Si se trata de una estación multi antena y se detectan valores que superan los normados, se procede a la utilización de instrumentos de banda angosta para detectar univocamente cuál de todas las fuentes de emisión es la que está generando los valores excesivos.

MÁS INFORMACIÓN Y FORMULARIO DE DENUNCIAS

www.cnc.gov.ar

GRACIAS POR CONCURRIR!