
Open and Configurable Channelization
for Future Software-Defined Radio

Ignacio Milani, Carlos Zerbini, Guillermo Riva
Grupo de Investigacion y Transferencia en Electronica Avanzada (GInTEA)
Universidad Tecnologica Nacional, Facultad Regional Cordoba (UTN-FRC)

Cordoba, Argentina
ignaciomilani@gmail.com, carloszerbini@gmail.com, guilriva@gmail.com

Abstract—Nowadays, signal demodulation chains used in
Software-Defined Radio (SDR) receivers involve analog and
digital sections. For economical reasons, the latter tends to gain
ground over the analog one, and typically involves a chan-
nelization module based on Digital Down-Converters (DDCs).
Given the current trend towards all-digital receivers based on
direct RF sampling, the channelization architecture will become
a critical issue, requiring open and flexible designs to cope with
its challenges. As contribution, we evaluate two open alternatives
for DDC’s implementation on field-programmable gate arrays
(FPGAs), one implemented in high-level language and the other
one through hardware description language (HDL). Together,
they provide flexibility for parameterization, as well as hardware-
level optimization.

Index Terms—All-digital receiver, SDR, channelization, DDC,
FPGA

I. INTRODUCTION

DDCs are a critical factor for the evolution of SDR towards
direct RF sampling architectures. In addition, the flexibility
of FPGAs makes these devices the natural choice for im-
plementing DDCs. Multiple designs are available for FPGAs;
however, based on our research, most of them are proprietary
[1] or poorly documented [2], are valuable personal projects
which require further improvements [3] or are oriented towards
education [4]. In this work, we review current options for
implementation of DDCs in FPGAs, and propose two com-
plimentary choices that help approaching their high- and low-
level challenges. In addition, we provide analysis of resource
consumption and scalability on FPGAs.

II. CHANNELIZATION IN SDR

A. General approaches for channelization

Typically, SDR systems capture a relatively wide spec-
trum band depending on its sampling frequency, and rely on
channelizers to extract one or multiple zones of interest for
subsequent baseband processing. Most popular channelization
techniques are, namely, a) Digital Down Conversion (DDC),
b) Frequency Domain Filtering (FDF), and c) Polyphase FFT
Filter Banks (PFFB) [5].

DDCs base on mixing and subsequent decimation and
filtering to extract the channel of interest. DDCs are very
flexible for adapting to variable channel widths and shifts,
but they are not suited to massive input channels. FDF,
meanwhile, begins by implementing the FFT of the input

signal, and then implements mixing, decimation and filtering
by simply extracting the adequate bins in frequency domain.
As drawback, they require computation of the FFT on input
signal, and inverse FFT must be applied to selected bins in
order to perform baseband processing. The PFFB channelizer,
finally, assumes equally-spaced channels, and on this basis
decomposes the decimating lowpass filter onto an extremely
efficient polyphase filter, followed by a resource-demanding
FFT block.

In this work, we will focus on channelizers based on DDC
techniques, due the advantages of flexibility in selecting both
the carrier frequency and channel bandwidth for the mid-
sized SDR receiver. For increased flexibility, the FDF approach
could be considered, while PFFB would be the choice for
hundreds of redundant channels.

B. Digital Down-Converters (DDCs)

Depending on the SDR generation [6], the DDC can be used
to downconvert two already demodulated and digitized orthog-
onal signals (Gen1, e.g., BladeRF, LimeSDR, or Ettus B200),
or to downconvert a still modulated signal at intermediate
frequency (IF) onto a complex baseband signal, (Gens. 2 and
3, e.g., analog-IF and direct sampling such as Panoradio and
Pi-radio). Current generation of direct-sampling SDRs tends to
minimize analog front-end due to its inherent issues regarding
linearity, DC offsets, I/Q path mismatches, etc., putting the
DDC in charge of these tasks.

Fig. 1 shows a typical Gen. 2/3 structure, where the DDC
involves three main elements: 1) Numerically Controlled Os-
cillator (NCO) generating two orthogonal sinusoids at IF or
RF, 2) two mixers for getting the orthogonal I and Q baseband
signals, and 3) a downsampling stage to adapt sample rates,
and low-pass filtering to remove the involved aliasing. Wide-
band DDCs, i.e., those with moderate downsampling ratio,
can be implemented through mixers followed by FIR filters
in software. Narrowband DDCs, meanwhile, require faster
filtering schemes implemented on DSPs or FPGAs, such as
the Hogenauer or Cascade Integrator Comb (CIC) filters, and
combinations of CIC and FIR in multiple stages [4] [7].

C. CIC filters

As side effect of downsampling in DDCs, aliasing arises,
requiring digital low-pass filtering. When high conversion



16

16

90∘

16

R
1616 16

CFIR
16 Iout

datain

R
16 16

CFIR
16 Qout

CIC
Decimator

Compensation
FIR filter

DDC

z–1 z–1 z–1

R
–

z–N
–

z–N
–

z–N

Fig. 1. Digital Down-Converter architecture.

ratios are required, i.e., above 8, CIC filters are the best
choice since they only require adders in contrast to FIR filters
which also require multipliers. In addition, improvements such
as polyphase techniques add to their efficiency. However,
since CIC filter essentially implements moving average, its
frequency response follows a sinc shape that suffers a steep
droop which must be corrected through a compensating FIR
filter. As shown in Fig. 1, CIC filters involve an integrator
section which is a recursive accumulator running at input
frequency fin, followed by downsampling by a factor R, and
the differentiator (i.e., comb) section running at rate fout which
subtracts the D delayed result. Since the comb runs R times
slower than the integrator, the delay chain is shortened to
N = D/R length.

When downsampling by R, multiple aliases fold at baseband
which are minimized by cascading Q CIC stages. In addition,
as consequence of the integrating nature of the filter, it has gain
DQ, so a final gain correction is needed and special care has to
be taken to avoid overflow. In general, N = D/R affects the
zeros of the frequency response, while Q affects its shape. For
increasing R, changes in frequency response are negligible as
long as N = D/R is kept constant, which is very convenient
for variable-bandwidth SDRs. Further analysis of CIC filters
can be found in [4] and [8].

III. TWO OPEN DDC ALTERNATIVES

A. High-level implementation

For our first approach, we based on a DDC example
offered by MathWorks [9]. The design is aimed at a typical
application, running at input clock rate 122.88 MHz, standard
for 5G radios, and presents an overall downsampling ratio of
64, giving an output sample rate of 1.92 Msps. This output
rate is the typical sampling rate used by 4G and 5G receivers
for cell search and Master Information Block (MIB) recovery,
which is its essential control information.

In this case, as shown in Fig. 2, the DDC consists of NCO,
mixer and subsequent decimating filter chain. Since the overall
decimation ratio is 64, multiple decimating stages are required.

Thus, the chain consists of a CIC decimator filter (R=8, N=1,
Q=3), CIC gain correction for normalization of large CIC
gain; Compensation FIR filter to flatten CIC passband and
provide additional decimation by two, efficient half-band FIR
decimator by two, and a final FIR decimator.

B. Low-level implementation

To evaluate the effects of hardware-level parameterization
and optimization, HDL implementations of DDC were sur-
veyed. DDC/DUC compilers and cores are offered by FPGA
providers; however they are closed and sometimes deprecated
designs [1].

Some SDR platforms, such as NI Ettus, have available
FPGA HDL code [2]; however it is not documented, which
makes its reuse or modification very difficult. Among open
choices, an interesting project aiming at FPGA-based SDR
cores is the one by Tsoeunyane et al. [10], however it involves
excessive complexity for our current goals. In addition, a
number of open, partial implementations exist which can be
reused, however they require careful review for correctness
and completion for its effective application. In particular, we
based on the work by Tavares [3], improving it and adding the
compensation FIR filter according to the guidelines in [11]
and [12]. As seen in Fig. 3, the first step is the complex
mixer which receives both the real, modulated signal and
two orthogonal sinusoids from the NCO. Efficient NCOs are
commonly implemented as CORDIC cores [7]. The next step
is the downsampling filter, formed by the decimating CIC
(R=8, N=1, Q=3), gain correction stage, and final decimating
FIR filter to compensate for the steep magnitude droop of the
CIC. This approach was designed for an input clock rate of
100 MHz, resulting in an output sample rate of 12.5 Msps.

Iout

Qout

datain

NCO

Compensation
FIR

Decimator

Halfband
FIR

Decimator

Final
FIR

Decimator

CIC

Decimator

and gain

correction

Fig. 2. Block diagram of high-level DDC implementation.

Iout

Qout

datain

NCO

Compensation
FIR

CIC

Decimator

and gain

correction

Fig. 3. Block diagram of low-level DDC implementation.

IV. RESULTS

A. High-level implementation

In first place, the filtering chain is designed in Matlab
according to the requirements fpassband = 540 (36 15-
kHz LTE subcarriers, enough for our goals), fstopband =
700 kHz, passband ripple = 0.1, and stopband attenuation =



TABLE I
HIGH-LEVEL DDC: RESOURCE UTILIZATION (ONE INSTANCE)

Module Slice
LUT

Slice
Register Slice LUT as

Logic
LUT as
Memory DSPs

NCO/Mix 171 209 69 170 1 4
CIC Dec 309 391 102 309 0 0

Comp FIR 162 333 85 159 2 2
HB Dec 301 546 156 299 2 4

Final Dec 987 2745 648 987 0 6
Top level 2119 4849 1179 2082 37 16

TABLE II
LOW-LEVEL DDC: RESOURCE UTILIZATION (ONE INSTANCE)

Module Slice
LUTs

Slice
Register Slice LUT as

Logic
LUT as
Memory DSPs

NCO/Mix 71 70 43 71 0 2
CIC Dec 282 432 106 182 0 0

Comp FIR 604 416 226 588 8 5
Top level 962 926 324 946 16 12

60 dB. Fixed-point behaviour is evaluated against the reference
design. Then, the NCO for the mixing stage is designed
according to desired frequency resolution and spurious-free
dynamic range (SFDR), generating a ROM-based lookup table.
Finally, all the components are integrated in a Modelsim block
used for simulation of the DDC and subsequent generation of
HDL code. The design is verified both by HDL simulation
and proof-of-concept on a Xilinx Zynq Z7020-based Zedboard
platform, by applying a RAM-stored test tone and monitoring
the output by means of an Integrated Logic Analyzer (ILA).
Resource utilization is shown in Table I. Most resources are
consumed by the final FIR decimator which needs to give final
shape to the frequency response; however it runs at the lowers
rate of the chain. As shown, the CIC needs no DSP blocks at
all. It it worth to note that top-level requirements are slightly
smaller than the sum for modules, since slice reuse occurs.

B. Low-level implementation

In this case, utilization reported in Table II is in general
lower since this design downsamples by R=8 against R=64
for the high-level design. As a consequence, only one CIC
stage and compensation FIR is required. NCO requires far less
slices since this implementation does not impose frequency
resolution and SFDR requirements as the high-level does. On
the other hand, the compensation filter in this case requires
15 coefficients against 7 coefficients in the high-level case,
therefore requiring considerable higher resources (i.e., 604

TABLE III
REPORT UTILIZATION FOR FOUR INSTANCES (BOTH APPROACHES)

DDC Slice
LUTs

Slice
Register Slice LUT as

Logic
LUT as
Memory DSPs

High-L 8515 19381 4764 8367 148 64
Low-L 3855 3704 1380 3791 64 48

LUTs against 162 LUTs, etc.). This can be attributed to the
single-stage architecture.

We finally replicated both designs four times to appreciate
scalability for multi-channel SDRs. As seen in Table III, both
designs scale as expected, supporting multiple channels with
very low percentage of available resources on a typical cost-
optimized FPGA device as the Zynq Z7020.

Regarding timing results, fclk = 122, 88 MHz were re-
quired to the high-level design and fclk = 100 MHz to the
low-level one, and both are met by the designs. Worst Negative
Slack (WNS) for the high-level implementation was 1.294 ns
while WNS for the hardware-level was 6.591 ns, showing a
safe margin.

V. CONCLUSIONS

In this work, we propose and evaluate two open alternatives
for DDC’s implementation on FPGAs, one implemented in
high-level language and the other one through HDL. To-
gether, they provide flexibility for parameterization, as well as
hardware-level optimization, both valuable features in research
and development of current and future SDR systems. As future
work, further optimization as well as FDF/PFFB options are
considered.

ACKNOWLEDGMENTS

This research work was supported by Programa Estimulo a
las Vocaciones Cientı́ficas (EVC), Consejo Interuniversitario
Nacional (CIN), and PID CCUTNCO0007833, Monitoreo de
Calidad de Servicio en Redes de Comunicaciones Moviles,
Secretarı́a de Ciencia y Tecnologı́a (SCyT), UTN-FRC.

REFERENCES

[1] Xilinx Corp., 2022. “DDC/DUC Compiler”. [Online]. Available: https://
www.xilinx.com/products/intellectual-property/duc ddc compiler.html.

[2] Ettus Research, 2022. “USRP Hardware Driver and USRP Man-
ual”. [Online]. Available: https://files.ettus.com/manual/page images.
html#images building xilinx.

[3] Digital down converter - IE309E Unicamp (2022). [Online]. Available:
https://github.com/danielot/ddc.

[4] U. Mayer-Baese, Digital Signal Processing with Field Programmable
Gate Arrays, Springer, 2014.

[5] L. Pucker, “Channelization techniques for software defined radio, ” in
Proc. of SDR forum conference, 2003, pp. 1–6.

[6] R. W. Stewart, K. W. Barlee, D. S. W. Atkinson, L. H. Crockett,
Software Defined Radio using MATLAB and Simulink and the RTL-
SDR. Strathlclyde Academic Media, 2015.

[7] A. Abinaya and M. Maheswari, “ A survey on digital down converter
architecture for next generation wireless applications, ” IOP Conf.
Series: Materials Science and Engineering, vol. 872, pp. 12-37, 2020.

[8] R. Lyons, 2022. “A beginner’s guide to cascaded integrator-comb (cic)
filters”. [Online]. Available: https://www.dsprelated.com/showarticle/
1337.php

[9] The MathWorks, Inc., 2022. “Implement Digital Downconverter
for FPGA”. [Online]. Available: https://la.mathworks.com/help/dsp/ug/
hdl-implementation-of-digital-down-converter-for-LTE.html.

[10] L. Tsoeunyane, S. Winberg, and M. Inggs, “Software-defined radio
fpga cores: Building towards a domain-specific language, ” International
Journal of Reconfigurable Computing, vol. 2017, pp. 1–28, 07, 2017.

[11] Intel Corp., 2022. “Understanding CIC Compensation Filters”. [Online].
Available: http://www.altera.com/literature/an/an455.pdf.

[12] Octave/MATLAB code for generating compensation FIR coefficients
(2022). [Online]. Available: https://github.com/ericgineer/CIC Octave
Matlab.

https://www.xilinx.com/products/intellectual-property/duc_ddc_compiler.html
https://www.xilinx.com/products/intellectual-property/duc_ddc_compiler.html
https://files.ettus.com/manual/page_images.html#images_building_xilinx
https://files.ettus.com/manual/page_images.html#images_building_xilinx
https://github.com/danielot/ddc
https://www.dsprelated.com/showarticle/1337.php
https://www.dsprelated.com/showarticle/1337.php
https://la.mathworks.com/help/dsp/ug/hdl-implementation-of-digital-down-converter-for-LTE.html
https://la.mathworks.com/help/dsp/ug/hdl-implementation-of-digital-down-converter-for-LTE.html
http://www.altera.com/literature/an/an455.pdf
https://github.com/ericgineer/CIC_Octave_Matlab
https://github.com/ericgineer/CIC_Octave_Matlab

	Introduction
	Channelization in SDR
	General approaches for channelization
	Digital Down-Converters (DDCs)
	CIC filters

	Two open DDC alternatives
	High-level implementation
	Low-level implementation

	Results
	High-level implementation
	Low-level implementation

	Conclusions
	References



